MEDICAL POLICY

SUBJECT: POSITRON EMISSION TOMOGRAPHY (PET) CARDIAC APPLICATIONS
POLICY NUMBER: 6.01.41
CATEGORY: Technology Assessment

EFFECTIVE DATE: 04/19/12
REVISED DATE: 04/18/13, 02/20/14, 03/19/15, 02/18/16, 02/16/17
PAGE: 1 OF 5

- If a product excludes coverage for a service, it is not covered, and medical policy criteria do not apply.
- If a commercial product, including an Essential Plan product, covers a specific service, medical policy criteria apply to the benefit.
- If a Medicare product covers a specific service, and there is no national or local Medicare coverage decision for the service, medical policy criteria apply to the benefit.

POLICY STATEMENT:

Based upon our criteria and assessment of peer reviewed literature, FDG positron emission tomography (PET) using a full ring dedicated PET scanner is considered medically appropriate for the following cardiac indications using radiotracer FDG rubidium 82 (Rb-82) or nitrogen ammonia 13 (ammonia N-13):

I. To assess myocardial perfusion and thus diagnose coronary artery disease in patients with indeterminate SPECT imaging.
II. May be used in place of SPECT imaging for patients with conditions that may cause significant attenuation problems with SPECT; such as morbid obesity (Body Mass Index greater than 35 kg/m²), chest wall deformity, large breasts, breast implants.
III. Routine use in post heart transplant assessment of transplant CAD; may image every 2 years.
IV. To assess myocardial viability in patients with severe left ventricular dysfunction as a technique to determine candidacy for a revascularization procedure.
V. Clinical suspicion of cardiac sarcoid in patients unable to undergo MRI scanning (e.g., patients with pacemakers, automatic implanted cardioverter-defibrillators (AICDs), or other metal implants).
VI. 3D rendering, (CPT®76376/CPT®76377), should not be billed in conjunction with PET

Refer to Corporate Medical Policy #6.01.07 regarding Positron Emission Tomography-NonOncologic Applications.
Refer to Corporate Medical Policy #6.01.29 regarding Positron Emission Tomography-Oncologic Applications.
Refer to Corporate Medical Policy #11.01.03 regarding Experimental or Investigational Services.

POLICY GUIDELINES:

The Federal Employees Health Benefit Program (FEHBP/FEP) requires that procedures, devices or laboratory tests approved by the U.S. Food and Drug Administration (FDA) may not be considered investigational and thus these procedures, devices or laboratory tests may be assessed only on the basis of their medical necessity.

DESCRIPTION:

Positron emission tomography (PET) is an imaging technology that can reveal metabolic information in various tissue sites. The metabolic information is what distinguishes it from other imaging modalities such as magnetic resonance imaging (MRI) and computed tomography (CT) that provide primarily anatomic information. PET scanning can be used to identify coronary artery disease by identifying perfusion defects, to assess myocardial viability in patients with left ventricular dysfunction as a technique to determine candidacy for a revascularization procedure and may potentially be used to measure myocardial blood flow and blood flow reserve. Cardiac PET is also being studied for evaluation of coronary artery inflammation. PET scans measure concentrations of radioactive chemicals that are partially metabolized in the body and are based on the use of positron emitting radionuclide tracers coupled to organic molecules, such as glucose, ammonia, or water. Dedicated PET scanners consist of multiple detectors arranged in a full or partial ring around the patient.

A variety of radiotracers are used for PET scanning including fluorine-18, rubidium-82, ammonia N-13, carbon-11, oxygen-15 and nitrogen-13. Fluorine-18 is often coupled with fluorodeoxyglucose (FDG) as a means of detecting glucose metabolism, which in turn reflects the metabolic activity, and thus viability, of the target tissue. Because of their
short half-life, tracers must be made locally. With exception of fluorine and rubidium all the tracers must be manufactured with an on-site cyclotron.

PET has emerged as an important alternative perfusion imaging modality due to recent shortages of molybdenum-99/technetium-99m (99mTc). It is a well-established modality for evaluation of myocardial blood flow (MBF) as well as, for assessment of myocardial metabolism and viability in patients with ischemic left ventricular (LV) dysfunction. Potential future applications of PET for plaque and molecular imaging and for use in inflammatory conditions.

RATIONALE:

The U.S. Food and Drug Administration (FDA) has approved the scanner and imaging hardware for PET as being substantially equivalent to x-ray computed tomography (CT). The FDA requires PET radiotracers to be approved through a new drug approval (NDA) process. Because PET radiotracers have an extremely short half-life, they must be produced in the clinical setting. The FDA also intends to regulate drug manufacturing processes in PET facilities. In 1991 the FDA approved the use of Rubidium 82 (Rb 82) as a myocardial perfusion tracer and in 1999 approved the use of ammonia N-13 as a myocardial perfusion tracer.

Clinical evidence supports that the use of Rubidium 82 (Rb-82) PET and ammonia N-13 PET scans in clinical practice has the potential to improve net health outcomes through changes in patient management. Studies demonstrate that both tracers have high reliability and validity in the evaluation of myocardial perfusion.

In 2009, the American College of Cardiology (ACC) and the American Heart Association (AHA) published updated guidelines for cardiac radionuclide imaging. Fifty-seven clinical scenarios were developed by a writing group and scored by a separate technical panel on a scale of 1 to 9 to designate appropriate use, inappropriate use, or uncertain use. In general, use of cardiac RNI for diagnosis and risk assessment in intermediate- and high-risk patients with coronary artery disease (CAD) was viewed favorably, while testing in low-risk patients, routine repeat testing, and general screening in certain clinical scenarios were viewed less favorably. Additionally, use for perioperative testing was found to be inappropriate except for high selected groups of patients. It is anticipated that these results will have a significant impact on physician decision making, test performance, and reimbursement policy, and will help guide future research.

2011 Appropriateness Criteria from the American College of Radiology (ACR) considers both SPECT and PET to be appropriate for the evaluation of patients with a high probability of coronary artery disease. ACR states that PET perfusion imaging has advantages over SPECT, including higher spatial and temporal resolution. Routine performance of both PET and SPECT are not necessary.

CODES:

<table>
<thead>
<tr>
<th>Number</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>78459</td>
<td>Myocardial imaging, (PET), metabolic evaluation</td>
</tr>
<tr>
<td>78491</td>
<td>Myocardial imaging, positron emission tomography, (PET), perfusion; single study at rest or stress</td>
</tr>
<tr>
<td>78492</td>
<td>multiple studies at rest and/or stress</td>
</tr>
</tbody>
</table>

Eligibility for reimbursement is based upon the benefits set forth in the member’s subscriber contract.

CODES MAY NOT BE COVERED UNDER ALL CIRCUMSTANCES. PLEASE READ THE POLICY AND GUIDELINES STATEMENTS CAREFULLY.

Codes may not be all inclusive as the AMA and CMS code updates may occur more frequently than policy updates.

Code Key: Experimental/Investigational = (E/I), Not medically necessary/appropriate = (NMN).

CPT:

- 78459 Myocardial imaging, (PET), metabolic evaluation
- 78491 Myocardial imaging, positron emission tomography, (PET), perfusion; single study at rest or stress
- 78492 multiple studies at rest and/or stress

Copyright © 2017 American Medical Association, Chicago, IL

HCPCS:

- A9526 Nitrogen N-13 ammonia, diagnostic, per study dose, up to 40 millicuries
- A9552 Fluorodeoxyglucose F-18 FDG, diagnostic, per study dose, up to 45 millicuries

Proprietary Information of Excellus Health Plan, Inc.
A9555 Rubidium Rb-82, diagnostic, per study dose, up to 60 millicuries
S8085 (E/I) Fluorine-18 fluorodeoxyglucose (F-18 FDG) imaging using dual-head coincidence detection system (non-dedicated PET scan)

ICD-9:
414.00-414.05 Coronary atherosclerosis
429.9 Heart disease, unspecified (includes left ventricular dysfunction)

ICD10:
I25.10-I25.119 Atherosclerotic heart disease of native coronary artery with or without angina pectoris (code range)
I25.700-I25.739 Atherosclerosis of autologous vein or artery coronary artery bypass graft(s) with angina pectoris (code range)
I25.790-I25.799 Atherosclerosis of other coronary artery bypass graft(s) with angina pectoris (code range)
I25.810 Atherosclerosis of coronary artery bypass graft(s) without angina pectoris
I51.9 Heart disease, unspecified
I52 Other heart disorders in diseases classified elsewhere

REFERENCES:

Proprietary Information of Excellus Health Plan, Inc.

* key article

KEY WORDS:
FDG PET, FDG SPECT, Gamma Camera, Ammonia N-13, Rubidium 82.

Proprietary Information of Excellus Health Plan, Inc.
CMS COVERAGE FOR MEDICARE PRODUCT MEMBERS

There is currently a National Coverage Determination (NCD) for PET scans. Please refer to the following NCD website for Medicare Members: http://www.cms.gov/medicare-coverage-database/details/ncd-details.aspx?NCDId=211&ncdver=4&bc=AgAAgAAAAAA.&