MEDICAL POLICY DETAILS

<table>
<thead>
<tr>
<th>Medical Policy Title</th>
<th>PLASMAPHERESIS, PLASMA EXCHANGE AND APHERESIS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Policy Number</td>
<td>8.01.04</td>
</tr>
<tr>
<td>Category</td>
<td>Technology Assessment</td>
</tr>
<tr>
<td>Effective Date</td>
<td>04/19/00</td>
</tr>
<tr>
<td>Revised Date</td>
<td>08/16/01, 08/15/02, 07/17/03, 05/19/04, 04/21/05, 05/18/06, 04/19/07, 04/17/08, 03/19/09, 04/22/10, 03/17/11, 03/15/12, 02/21/13, 02/20/14, 02/19/15, 02/18/16, 02/16/17</td>
</tr>
<tr>
<td>Archived Date</td>
<td>02/15/18</td>
</tr>
<tr>
<td>Edited Date</td>
<td>02/21/19</td>
</tr>
</tbody>
</table>
| Product Disclaimer | • If a product excludes coverage for a service, it is not covered, and medical policy criteria do not apply.
 • If a commercial product (including an Essential Plan product) or a Medicaid product covers a specific service, medical policy criteria apply to the benefit.
 • If a Medicare product covers a specific service, and there is no national or local Medicare coverage decision for the service, medical policy criteria apply to the benefit. |

POLICY STATEMENT

I. Based upon our criteria and assessment of the peer reviewed literature, plasmapheresis with plasma exchange have been medically proven to be effective and therefore medically appropriate for the following conditions:
 A. ABO incompatible hematopoietic progenitor cell transplants;
 B. Acute fulminant central nervous system (CNS) demyelination associated with multiple sclerosis or other conditions, such as transverse myelitis, etc.;
 C. Autoantibodies to neutrophil cytoplasmic antigens (ANCA)-associated vasculitis (e.g., Wegener’s granulomatosis) with associated renal failure (serum Cr greater than 5.8 mg/dl);
 D. Chronic inflammatory demyelinating polyneuropathy (CIDP) for patients with severe or life-threatening symptoms who have failed to respond to conventional therapy with prednisone or intravenous immunoglobulins (IVIg);
 E. Cryoglobulinemia, multiple manifestations of mixed, severe type (e.g., cryoglobulinemic nephropathy, skin ulcers, sensory motor neuropathy, widespread vasculitis);
 F. Guillain-Barré syndrome (GBS):
 1. Severity grade 1-2 within two weeks of onset; grades 1-2 disease defined by the following: minor symptoms of neuropathy, but capable of manual work (grade 1), ability to walk without support, but incapable of manual work (grade 2); or
 2. Severity grade 3-5 within four weeks of onset; grades 3-5 disease defined by the following: ability to walk 5 meters with assistance (grade 3), confinement to a bed or chair-bound (grade 4), or requiring assisted ventilation for at least part of the day or night (grade 5); or
 3. Children less than ten (10) years of age with severe GBS.
 G. HELLP (hemolysis [H], elevated liver enzymes [EL], and low platelet [LP] counts) syndrome of pregnancy;
 H. Hemolytic uremic syndrome (HUS), atypical;
 I. Hyperviscosity syndromes associated with multiple myeloma, Waldenstrom’s macroglobulinemia, or other conditions;
 J. Idiopathic thrombocytopenic purpura in emergency situations only;
 K. IgA and IgG paraproteinemia with polyneuropathy;
 L. Myasthenia gravis in crisis or as part of a preoperative preparation of a patient with Myasthenia gravis;
 M. N-methyl-d-aspartate receptor antibody encephalitis;
 N. Post-transfusion purpura;
 O. Progressive renal failure due to anti-basement membrane antibodies (e.g., Goodpasture’s syndrome);

Proprietary Information of Excellus Health Plan, Inc.
Medical Policy: PLASMAPHERESIS, PLASMA EXCHANGE AND APHERESIS
Policy Number: 8.01.04
Page: 2 of 8

P. Solid organ transplant: prior to transplant as a treatment for patients at high-risk of antibody mediated rejection (AMR) or following transplant as a treatment of AMR;
Q. Progressive multifocal leukoencephalopathy associated with natalizumab; or
R. Thrombotic thrombocytopenic purpura (TTP).

II. Based upon our criteria and assessment of the peer-reviewed literature, **plasmapheresis with plasma exchange** has not been medically proven to be effective and is considered **investigational** in the following conditions:
 A. Amyotrophic lateral sclerosis;
 B. Asthma;
 C. Bullous pemphigoid;
 D. Chronic fatigue syndrome;
 E. Cryoglobulinemia, other than mixed, severe type as mentioned above;
 F. Guillain-Barré syndrome in children less than ten (10) years old with mild or moderate forms;
 G. Inclusion body myositis;
 H. Multiple sclerosis (chronic progressive or relapsing remitting);
 I. Neuromyelitis Optica;
 J. Paraneoplastic syndromes including Eaton-Lambert myasthenic syndrome;
 K. Paraproteinemic polyneuropathy, including monoclonal gammopathy of undetermined significance (MGUS);
 L. Pemphigus;
 M. Polymyositis and dermatomyositis;
 N. Rapidly progressive glomerulonephritidies, excluding those related to anti-baseament membrane immunoglobulins (e.g., Goodpasture’s syndrome);
 O. Regional enteritis (Crohn’s disease);
 P. Rheumatoid arthritis;
 Q. Scleroderma (systemic sclerosis);
 R. Stiff man syndrome;
 S. Systemic lupus erythematosus; or
 T. All other indications, unless listed in Policy Statement I.

III. Based upon our criteria and assessment of the peer reviewed literature, **low-density lipoprotein (LDL) apheresis** has been medically proven to be an effective treatment option and therefore **medically appropriate** for severely hypercholesteremic patients:
 A. With LDL consistently greater than 300 mg/dl despite maximal drug therapy; or
 B. With LDL consistently greater than 200 mg/dl despite maximal drug therapy and who also have documented coronary artery disease. (Defined as a history of myocardial infarction, coronary artery bypass surgery [CABG], percutaneous transluminal angioplasty [PTCA], or other coronary revascularization procedure, or progressive angina documented by exercise, or non-exercise stress test).

IV. Based upon our criteria and assessment of peer-reviewed literature, rheopheresis has not been medically proven to be effective as a treatment for the dry form of age-related macular degeneration, and therefore, is considered **investigational**.

V. Based upon our criteria and assessment of peer-reviewed literature, therapeutic apheresis (e.g., erythrocytapheresis) is considered **medically appropriate** in the treatment regimen of patients with hyperviscosity syndrome due to primary or secondary polycythemia when therapeutic phlebotomy is contraindicated.

VI. Based upon our criteria and assessment of peer-reviewed literature, therapeutic apheresis with selective high-density lipoprotein (HDL) delipidation and plasma reinfusion has not been medically proven to be effective and is considered **investigational** for all indications, including but not limited to acute coronary syndrome.

Refer to Corporate Medical Policy #7.02.02 regarding Allogeneic Hematopietic (Stem) Cell Transplantation.

Refer to Corporate Medical Policy # 11.01.03 regarding Experimental and Investigational Services.

This policy does not address protein immunoadsorption therapy/extracorporeal immunoadsorption where plasma is collected in an apheresis procedure and filtered through protein A columns.

Proprietary Information of Excellus Health Plan, Inc.
POLICY GUIDELINES

I. Patients receiving plasma exchange as a treatment of CIDP should meet the diagnostic criteria for CIDP, as established by the American Academy of Neurology AIDS Task Force (See BCBSA Medical Policy #8.02.02 Appendix for diagnostic criteria for CIDP).

II. The Federal Employees Health Benefit Program (FEHBP/FEP) requires that procedures, devices or laboratory tests approved by the U.S. Food and Drug Administration (FDA) may not be considered investigational and thus these procedures, devices or laboratory tests may be assessed only on the basis of their medical necessity.

DESCRIPTION

Although often used interchangeably, the terms therapeutic apheresis, plasmapheresis and plasma exchange carry different meanings when used properly.

Apheresis is a general term describing the removal of blood from a subject. A portion of the blood is separated and retained while the rest is returned to the donor.

LDL apheresis (low-density lipoprotein apheresis) describes a technology used to acutely remove LDL from the plasma. The patient initially undergoes an apheresis procedure to isolate the plasma. The LDLs are then selectively removed from the plasma by column adsorption or precipitation. The LDL-depleted plasma and erythrocytes are then returned to the patient’s circulation. The procedure usually takes about 2-4 hours and must be repeated every 1-3 weeks.

Therapeutic apheresis with selective HDL delipidation and plasma reinfusion is a procedure in which plasma is removed from the body by apheresis, processed through a delipidation device and then returned to the patient. The delipidation procedure selectively removes cholesterol from HDL, converting the major alpha HDL to pre-beta-like HDL. The plasma with pre-beta-like HDL is then reinfused to the patient. The pre-beta-like HDL is a form of HDL that enhances cholesterol transport to the liver and is thought to reduce atherosclerosis development and burden.

The most common form of apheresis is *plasmapheresis*, which involves the extraction of plasma from withdrawn blood followed by retransfusion of the formed elements into the donor. It may be done for therapeutic purposes or for the collection of plasma components. Other methods of apheresis are leukopheresis or lymphocytapheresis in which the white blood cell are isolated and retained and peripheral stem cell collection in which the stem cells are isolated and retained for an upcoming autologous bone marrow transplant.

Plasma exchange (PE) is frequently done in conjunction with plasmapheresis. The plasma is isolated, then discarded and replaced with a substitution fluid such as albumin. Plasma exchange is a nonspecific therapy, since the entire plasma is discarded.

The proposed benefits of *plasmapheresis* are based on the fact that circulating substances, such as toxins or autoantibodies, can accumulate in the plasma. It is hypothesized that removal of these factors can be therapeutic in certain situations. Because plasmapheresis does not address underlying pathology, and due to the phenomenon of rebound antibody production, its use in chronic diseases has been more controversial than in acute self-limited diseases.

Rheopheresis is a technique in which the blood is removed from the patient and the red cells are separated from the plasma. The plasma then undergoes a filtration process in which high molecular weight proteins, lipoproteins and free radicals are removed. The filtered plasma is recombined with the red blood cells and returned to the patient. Rheopheresis has been proposed as a treatment of the dry form of age-related macular degeneration as it has the potential to improve microcirculation and ocular blood flow by reducing the blood viscosity.
RATIONALE

Plasmapheresis is a procedure and therefore not subject to FDA approval, however the plasma exchange systems, such as the Haemonetics Therapeutic Plasma Exchange Set (Haemonetics Corp.) and data systems and plasmapheresis data systems, such as the Plasmapheresis Data System III 1.0 (Medserve, Inc.) used in the procedure have been approved by the FDA.

Published clinical trials substantiate the beneficial effect of plasmapheresis on health outcomes for acute fulminant CNS demyelination and paraproteinemic polyneuropathies. Based on the literature, plasmapheresis is a widely accepted component in the management of acute rejection, with most experience related to kidney transplantation due to its higher volume and use in living donors. It is accepted as standard therapy for transplant recipients at high risk for antibody mediated rejection (AMR). As a treatment of AMR, plasmapheresis is often used in combination with IVIG or anti-CD20 therapy.

Published clinical trials have not provided evidence to support the efficacy and safety of plasmapheresis over current treatment options for the indications listed as investigational in this policy. Review of literature shows studies involving small numbers of subjects indicating plasmapheresis may be beneficial in treating severe, resistant cases of pemphigus vulgaris or bullous pemphigoid; those who are not responding to standard therapy or who require unacceptably high doses of steroids or immunosuppressants. However, two systematic reviews (N Khumalo, et al. 2005 and G Kirtschig, et al. 2004) found no benefit of the addition of plasmapheresis to the treatment regimens of patients with bullous pemphigoid.

Two lipid apheresis systems (for LDL apheresis) have received FDA approval: the Liposorber® LA-15 system (Kaneka Pharma America Corp.) and the H.E.L.P. (Heparin-induced Extracorporeal Lipoprotein Precipitation) system (Hogan & Hartson). Clinical trials substantiate that LDL apheresis leads to lowering of total cholesterol and LDL cholesterol in severely hypercholesteremic patients.

There are no devices FDA approved specifically for HDL delipidation. The Lipid Sciences Plasma Delipidation System-2 by Lipid Sciences Inc. was used in clinical studies. Lipid Sciences Inc. ceased business operations in 2012. Data on therapeutic apheresis with selective HDL delipidation and plasma reinfusion is limited to 1 RCT on safety and feasibility (Waksman, et al. 2010). This RCT reported improvements in intermediate outcomes; however, data are insufficient to determine the impact of therapeutic apheresis with selective HDL delipidation and plasma reinfusion on health outcomes.

Although the outcome data from the few small studies investigating rheopheresis as a treatment for the dry form of Age Related Macular Degeneration (ARMD) are promising, larger, well designed studies with long-term outcomes are necessary to determine its overall safety and efficacy as well as to define the role of this treatment modality.

CODES

- Eligibility for reimbursement is based upon the benefits set forth in the member’s subscriber contract.
- CODES MAY NOT BE COVERED UNDER ALL CIRCUMSTANCES. PLEASE READ THE POLICY AND GUIDELINES STATEMENTS CAREFULLY.
- Codes may not be all inclusive as the AMA and CMS code updates may occur more frequently than policy updates.

<table>
<thead>
<tr>
<th>Code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>36511</td>
<td>Therapeutic apheresis, for white blood cells</td>
</tr>
<tr>
<td>36512</td>
<td>for red blood cells</td>
</tr>
<tr>
<td>36513</td>
<td>for platelets</td>
</tr>
<tr>
<td>36514</td>
<td>for plasma pheresis</td>
</tr>
<tr>
<td>36515</td>
<td>with extracorporeal immunoadsorption and plasma reinfusion</td>
</tr>
<tr>
<td>36516</td>
<td>with extracorporeal selective adsorption or selective filtration and plasma reinfusion</td>
</tr>
<tr>
<td>0342T (E/I)</td>
<td>Therapeutic apheresis with selective HDL delipidation and plasma reinfusion</td>
</tr>
</tbody>
</table>
HCPCS Codes

<table>
<thead>
<tr>
<th>Code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>S2120</td>
<td>Low density lipoprotein (LDL) apheresis using heparin-induced extracorporeal LDL precipitation</td>
</tr>
</tbody>
</table>

ICD10 Codes

<table>
<thead>
<tr>
<th>Code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Multiple diagnosis codes</td>
</tr>
</tbody>
</table>

REFERENCES

Proprietary Information of Excellus Health Plan, Inc.

Proprietary Information of Excellus Health Plan, Inc.
Medical Policy: PLASMAPHERESIS, PLASMA EXCHANGE AND APHERESIS
Policy Number: 8.01.04
Page: 7 of 8

National Institutes of Health. Third report of the national cholesterol education program (NCEP) expert panel on
detection, evaluation and treatment of high blood cholesterol in adults (ATP III).

National Institute for Health and Care Excellence (NICE). Familial hypercholesterolaemia: identification and
management. CG71. Updated Nov 2017. [https://www.nice.org.uk/guidance/cg71/resources/familial-

*Ontario Health Technology Advisory Committee. Low density lipoprotein apheresis. 2007 Oct

Jul;54(7):1851-6.

Pagialonga F, et al. Indications, technique, and outcome of therapeutic apheresis in European pediatric nephrology units.

*Park CS, et al. Role of plasmapheresis as liver support for early graft dysfunction following adult liver donor liver

Feb;2592:160-3.

Rimmer E, et al. The efficacy and safety of plasma exchange in patients with sepsis and septic shock: a systematic review

Robinson JG. Management of familial hypercholesterolemia: a review of the recommendations from the National Lipid

Ruffatti A, et al. Plasmapheresis, intravenous immunoglobulins and betamethasone - a combined protocol to treat

conference on classification, diagnosis, management, and future research. J Clin Apher 2013 Oct 17 [Epub ahead of
print].

Yue-Meng W, et al. The effect of plasma exchange on entecavir-treated chronic hepatitis B patients with hepatic de-

*Key Article

CMS COVERAGE FOR MEDICARE PRODUCT MEMBERS