MEDICAL POLICY

SUBJECT: PEPTIDE RECEPTOR RADIONUCLIDE THERAPY (PRRT)

POLICY NUMBER: 7.01.78
CATEGORY: Technology Assessment
EFFECTIVE DATE: 06/21/07
REVISED DATE: 05/14/08, 04/16/09, 03/18/10, 03/17/11, 03/15/12, 02/21/13, 02/20/14, 02/19/15, 01/21/16, 01/19/17, 01/18/18

- If a product excludes coverage for a service, it is not covered, and medical policy criteria do not apply.
- If a commercial product, including an Essential Plan product, covers a specific service, medical policy criteria apply to the benefit.
- If a Medicare product covers a specific service, and there is no national or local Medicare coverage decision for the service, medical policy criteria apply to the benefit.

POLICY STATEMENT:

Based upon our criteria and assessment of peer-reviewed literature, peptide receptor radionuclide therapy has not been proven to medially effective and is considered investigational for the treatment of somatostatin-receptor positive tumors, including, but not limited to neuroendocrine tumors.

Refer to Corporate Medical Policy # 7.01.69 regarding Selective Internal Radiation Therapy (SIRT).

Refer to Corporate Medical Policy # 11.01.03 regarding Experimental and Investigational Services.

Refer to Corporate Medical Policy # 11.01.10 regarding Clinical Trials.

POLICY GUIDELINES:

The Federal Employee Health Benefit Program (FEHBP/FEP) requires that procedures, devices or laboratory tests approved by the U.S. Food and Drug Administration (FDA) may not be considered investigational and thus these procedures, devices or laboratory tests may be assessed only on the basis of their medical necessity.

DESCRIPTION:

Somatostatin is a peptide hormone that regulates the endocrine system and affects neurotransmission and cell proliferation via an interaction with G-protein-coupled somatostatin receptors and inhibition of the release of numerous secondary hormones. Five somatostatin receptors have been identified and characterized with each of the receptors activating distinct signaling mechanisms within cells. Analogs of somatostatin have been synthesized that are smaller, more potent, longer-lasting and more specific in their biologic effects than natural somatostatin. Examples of these analogs include octreotide, lanreotide and vaporeotide. Some of these analogs have become useful as medications for the treatment of acromegly, or the treatment of diarrhea and flushing episodes associated with carcinoid syndrome.

Many types of neuroendocrine tumors express somatostatin receptors including, but not limited to, pancreatic islet cell tumors (e.g., gastrinomas, glucagonomas, GHRHomas, and nonfunctioning islet cell tumors), VIPomas, carcinoids, insulinomas, and some adrenal cortical and differentiated thyroid tumors. Somatostatin receptor (SSTR) scintigraphy has become an important image modality in patients with SSTR-positive tumors. SSTR scintigraphy involves the administration of a radiolabeled peptide tracer, which is targeted at the somatostatin receptor. A more intensified, targeted radiotherapy, known as peptide receptor radionuclide therapy (PRRT), has been proposed and investigated for those patients with inoperable or metastasized neuroendocrine tumors who suffer from debilitating symptoms, such as carcinoid syndrome.

Several radiolabeled somatostatin analogs are currently being investigated in the treatment of patients with SSTR-positive metastasized neuroendocrine tumors. These conjugates all consist of a somatostatin analog, such as octreotide or octreotate, a complexing moiety (or chelator) and a radionuclide. The chelator, which is attached to the somatostatin analog, allows a stable connection between the analog and the radionuclide. The basic principle of tumor-targeting after systemic administration of the conjugate involves binding to SSTRs, which are expressed on the cell surface of the tumor cell, followed by effective internalization of the radionuclide-peptide complex. The emitted radiation can damage the DNA, which may subsequently lead to the induction of cell death. Different combinations of radionuclides and somatostatin analogues are used to target the specific SSTR-positive tumor. These analogues differ from each other in their affinity for the various five SSTR subtypes. This variable affinity is important because it can have great influence...
on the clinical effectiveness of the radiolabeled somatostatin analog. Indium (111In), yttrium (90Y) and lutetium (177Lu) have been the most frequently used radionuclides for targeted radiotherapy in the various clinical trials thus far.

RATIONALE:

Currently, there are no radiolabeled somatostatin analog conjugates that are FDA approved specifically for use in PRRT. Clinical studies investigating neuroendocrine tumors, in particular, those treated with 90Y- and 177Lu-labelled somatostatin analogues, are very encouraging in terms of tumor shrinkage and palliation of symptoms. However, complete responses are unusual and there have been no demonstrated improvements in survival. Differences in treatment protocols, such as administered doses, dosing schemes, the tumor response criteria, and the heterogeneity of the patient sample population in the various studies have made it impossible to come to any definitive conclusions regarding the overall health benefit of this therapy. Therefore, trials with better defined protocols and patient populations are necessary to determine the optimal PRRT and treatment scheme.

CODES:

<table>
<thead>
<tr>
<th>Number</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Eligibility for reimbursement is based upon the benefits set forth in the member’s subscriber contract.</td>
<td></td>
</tr>
<tr>
<td>CODES MAY NOT BE COVERED UNDER ALL CIRCUMSTANCES. PLEASE READ THE POLICY AND GUIDELINES STATEMENTS CAREFULLY.</td>
<td></td>
</tr>
<tr>
<td>Codes may not be all inclusive as the AMA and CMS code updates may occur more frequently than policy updates.</td>
<td></td>
</tr>
<tr>
<td>* No specific codes exist for PRRT, but the following codes could be billed:</td>
<td></td>
</tr>
<tr>
<td>CPT:</td>
<td>Radiopharmaceutical localization of tumor, or distribution of radiopharmaceutical agent(s); limited area</td>
</tr>
<tr>
<td>78800</td>
<td>multiple areas</td>
</tr>
<tr>
<td>78801</td>
<td>whole body, single day imaging</td>
</tr>
<tr>
<td>78802</td>
<td>tomographic (SPECT)</td>
</tr>
<tr>
<td>78803</td>
<td>whole body, requiring two or more days imaging</td>
</tr>
<tr>
<td>78804</td>
<td>whole body, single day imaging</td>
</tr>
</tbody>
</table>

HCPCS:	Radiopharmaceutical, diagnostic, not otherwise classified
A4641	Yttrium Y-90 ibritumomab tiuxetan, therapeutic, per treatment dose, up to 40 millicuries
A9543	Radiopharmaceutical, therapeutic, not otherwise classified
J2354	Injection, octreotide, nondepot form for subcutaneous or intravenous injection, 25 mcg
ICD10:	Multiple diagnosis codes

REFERENCES:

Proprietary Information of Excellus Health Plan, Inc.

* key article

KEY WORDS:

Peptide receptor radionuclide therapy, PRRT, PRRNT, Receptor-mediated radiotherapy, Radiolabeled nuclide therapy, somatostatin analog. 90Y-DOTATOC, 177Lu-DOTA0,Tyr3. 90Y-DOTA0,Tyr3
Based on our review, peptide receptor radionuclide therapy is not specifically mentioned in any National or Regional Medicare coverage determinations or policies.